If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-3Y^2-4Y+108
We move all terms to the left:
-(-3Y^2-4Y+108)=0
We get rid of parentheses
3Y^2+4Y-108=0
a = 3; b = 4; c = -108;
Δ = b2-4ac
Δ = 42-4·3·(-108)
Δ = 1312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1312}=\sqrt{16*82}=\sqrt{16}*\sqrt{82}=4\sqrt{82}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{82}}{2*3}=\frac{-4-4\sqrt{82}}{6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{82}}{2*3}=\frac{-4+4\sqrt{82}}{6} $
| 3(x+6)=58 | | (x/3)+3=(-6) | | 3b-2=5-19 | | (-7)+3w=(-1) | | 4(2c+1=28 | | 2/5x+23=57 | | (11/16)(y)=14 | | 82-9x=100 | | 3x+84=80 | | 68x-1=22x+1=180 | | 5(5+1)=8x-7 | | 3/x=18/(5x+2) | | 6n-16=7n+n | | 5w^=3w^+32 | | k+2=86 | | H(t)=-16t^2+11t+33 | | -12=4e | | 16u-7u=9 | | -y+6=X | | 6x^2+20+23x=0 | | 8z^2+10z+12=0 | | -3(1+8n)=2+2n | | 3/4(8x+12)=25.8 | | 14.5x+1.5=-31 | | 8x+55=x | | -7-4n-n=5n-3n | | 4x+5=114 | | 3/5j=60 | | 3/5h=60 | | -4x+5=-4x- | | 1/6j=14 | | 7/10a=49 |